Chapter 13

Lateral heterogeneity and the geoid: the importance of the
surface kinematic constraints

AM. Forte and W.R. Peltier

We apply the Green function technique to describe the internal load induced deformation of
3-D, self-gravitating, spherical shells of incompressible Newtonian fluid consisting either
of a single constant-viscosity shell or of two adjacent shells of different viscosity. Using
this method we derive closed form, analytic expressions for the kernel functions connecting
the internal lateral heterogeneity of density to the horizontal divergence of the surface flow
and to the non-hydrostatic geoid. Although the geoid constrains only the ratio of the upper
and lower mantle viscosities, the horizontal divergence field constrains their absolute
values. We find that both surface divergence and geoid fields are best fit with only a factor
of eight viscosity increase at 1200 km depth. We point out, however, that the coupling of
poloidal and toroidal flow in the Earth’s mantle, which is required to understand surface
velocity spectra, will most probably allow us to reduce the viscosity increase required by
the geoid data.

1. Introduction

Current inferences of the spherically symmetric viscosity distribution in the Earth’s mantle
rely upon internal loading schemes which relate the seismically inferred lateral density
variations in the Earth to the large-scale undulations of the non-hydrostatic geoid (e.g.,
Hager, 1984). These internal loading calculations all seem to require an increase in the
viscosity at the 670 km seismic discontinuity which is considerably greater than the
viscosity increase required by glacial isostatic adjustment analyses (e.g., Peltier, 1982). In
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this report we will present an alternative formulation of the internal loading problem and
we will later argue that a likely reason for the discrepancy between the viscosity inferences
obtained from post-glacial rebound data and isostatic geoid anomalies is that the Newtonian
viscous flow models used in current internal loading analyses are unable to satisfy the
surface kinematic constraints provided by the observed tectonic plate velocities.

The mathematical method most commonly used to relate geophysical surface
observables, such as the geoid, to lateral density variations in the mantle is the propagator
matrix technique (e.g., Richards and Hager, 1984; Ricard et al., 1984). In this report we
will show that the Green function technique employed by Parsons and Daly (1983) is a
mathematically straightforward alternative to the propagator matrix schemes allowing one
to readily derive analytic, closed-form, expressions for the kernels which connect lateral
density heterogeneity at depth to the surface observables. The Green functions considered
by Parsons and Daly (1983) were derived for a 2-D cartesian geometry where the effects of
self-gravitation were ignored; here we will show how the Green function method may be
extended to 3-D, spherical, self-gravitating shells of constant viscosity and also to the case
of shells consisting of two layers having different viscosities. The Green function method
will be employed to derive expressions for the kernel functions describing the non-
hydrostatic geoid and the horizontal divergence of the convective flow field produced at the
Earth’s surface by lateral density variations in the mantle.

Previous attempts to model the non-hydrostatic geoid (e.g., Hager, 1984) have ignored
the importance of the observed surface plate kinematics and the constraints they provide on
the viscosity structure of the mantle. The ecquipartition of kinetic energy between the
poloidal and toroidal components of the observed surface-plate velocity field is likely to
have a direct bearing on our ability to properly model the geoid. Despite the complications
produced by the poloidal-toroidal coupling of the convective flow in the mantle we will
demonstrate, using the simple physical models that will be presented, that on the whole the
observed large-scale plate motions are those expected to exist on the basis of the seismic
tomographic inferences of the internal density heterogeneity. This last result provides
strong and convincing support for the hypothesis that the large-scale tectonic plate motions
are the surface expression of deep-seated convection in the Earth’s mantle.

In section 2 of the report we will briefly summarize the main features of the observed
tectonic plate velocities. In section 3 we present our extension of the Green function
method which is then employed to infer the contrast between the viscosities of the upper
and lower mantles. In section 4, we discuss the trade-off we believe to exist between the
conversion of poloidal to toroidal flow and the strength of the viscosity contrast required by
the observed non-hydrostatic geoid. Finally, in section 5 of this report, we provide our
main conclusions.

2. Present-day tectonic plate velocities

Employing the Wilson-Morgan hypothesis of fixed hot spots, Minster and Jordan (1978)
have obtained a model for the absolute, present-day, tectonic plate velocities which are
depicted in Fig. 1. We shall refer to this velocity field as the "observed surface-plate
velocities”. From the observed surface-plate velocities we have calculated the spherical
harmonic coefficients of two scalars, the horizontal divergence and the radial vorticity,
which completely characterize the tectonic plate motions:
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VELOCITY SCALE: — =10cm/Yr

Figure 1. Surface plate velocity field constructed from the absolute angular velocity vectors of Minster and
Jordan (1978) in the "hot spot" frame.
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In equation (1) v is the observed surface-plate velocity field and D™ and V[ are,
respectively, the harmonic coefficients of the horizontal divergence and radial vorticity.

An alternative scalar representation of the surface kinematics, previously employed by
Hager and O’Connell (1978), is obtained by describing the observed surface-plate
velocities in terms of poloidal and toroidal components:

v=Y SPTEXAY0,0)+ 3 " AY[(6,0). 2)
I.m Im

In equation (2) we have employed the angular momentum Operator A =r xV (Backus,
1958) and S;" and T} are, respectively, the poloidal and toroidal scalars. A description of
the surface kinematics in terms of the two scalars appearing in (1) is completely equivalent
to a description in terms of the scalars appearing in (2) since one may readily show that

aD["

= ——— (3a)
1(+1)

. AV

TS (30)

where a is the radius of the Earth.

The harmonic coefficients D;* and VJ* (tabulated in Forte and Peltier, 1986) have been
used to synthesize the maps of horizontal divergence and radial vorticity presented in Fig.
2. From this figure it is evident that the horizontal divergence scalar is necessary to
represent two of the types of plate boundary which are observed in nature: the ridges and



294 AM. Forte and W.R. Peltier

Figure 2. (a) Surface divergence up to degree and order 32. The contour interval is 30 x 107 rad/yr. and the
individual contour levels are in units of 107 rad/yr. The dashed contour lines indicate negative divergence.
(b) Radial vorticity to degree and order 32. The contour interval and units are as in (a). The dashed contour
lines indicate negative vorticity (i.e., clockwise circulation).

trenches. The radial vorticity scalar is necessary to represent the third type of plate
boundary: the transform fault.

The partitioning of kinetic energy between the poloidal and toroidal components of the
observed surface-plate velocities may be determined by calculating their degree variances,
o;:

Ya

!
o, (poloidal)= | ¥ S/ s (4a)
m=—1
! Y2
o, (toroidal) = | ¥ 17 17| (4b)
m=—|

where the asterisk denotes complex conjugation. These degree variances are shown in Fig.
3(a) where one observes that there is an almost exact equipartition of kinetic energy
between the poloidal and toroidal components; this result was first obtained by Hager and
O’Connell (1978) who did not further consider its importance except in the context of their
Stokes flow extrapolation to depth of the observed surface-plate velocities. In a spherical
shell of chemically uniform fluid with physical properties that vary with radius only one
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Figure 3. (a) Degree variance of the poloidal and toroidal components of the surface velocity field. (b)
Degree variance of the horizontal divergence and radial vorticity fields derived from the surface plate
velocities.

expects thermally induced buoyancy forces to produce poloidal flow only. The factors that
are most probably responsible for generating the required large flux of energy from
poloidal to toroidal flow are the extreme lateral variations of viscosity in the mantle (e.g.
Hager and O’Connell, 1978) as well as the presence of chemically differentiated,
continental crust which is buoyant and therefore cannot be subducted (Peltier, 1985). In
Fig. 3(b) we show the degree variances of the horizontal divergence and radial vorticity
scalars and it will be noted in particular that the divergence spectrum is characterized by a
well-defined peak at [ =4, 5.

3. Predicting surface motions and the geoid from seismically inferred mantle
heterogeneity
3.1 Green function for a constant-viscosity mantle

The Boussinesq hydrodynamic equations which we consider describe the conservation of
mass and momentum in a viscous fluid:
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P81 +P1 g — VP +NAu=0. (6)

The quantities with subscript 1 are perturbations to the hydrostatic reference state which is
denoted by the subscript 0. The inertial force terms have been ignored in equation (6) since
the Earth’s mantle is characterized by an essentially infinite Prandtl number. We will adopt
the sign convection that the perturbed body force g, appearing in the self-gravitation term
P, &; in (6) is given by

g=VvVo,, @)
where ¢,, the perturbed gravitational potential, then satisfies
Apy=—-4nGp; . ®)
The body force g, is simply given by
8o
=11, )

where g, is the (approximately) constant gravitational acceleration in the Earth’s mantle.
Equation (5) shows that u is solenoidal and may therefore be represented as

u=VxAp +Ag (10)

where p and q are, respectively, the poloidal and toroidal scalars (Backus, 1958).
Substitution of results (7), (9), and (10) into equation (6) and application of Vx to the
resulting equation vields

Apl%mVxAAq—nAAZp:o. (11)

If one now applies the operator A- to equation (11) and uses the result A«(VXA) =0
(Backus, 1958) then the following is obtained:

n A2 = A2 P18 12)
where the operator A” = A-A is characterized by the property
APY[(0.0) =~ 1(I+1) Y["(8,0) (13)

and Y;"(0,0) is the complex spherical harmonic function which is normalized such that
1 (um .
o £ Y7(0,0) Y1'(9,0) dS =8y 8y (14)

where S denotes integration over the surface area of the unit sphere. If one expands the
quantities p and p,, in (12), in terms of spherical harmonics and uses results (13) and (14)
then the following important equation is obtained:
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m g (P(r)
D2 pi(r)=— ——, (15)
n r
where p["(r) and (p;);"(r) are the radially-varying spherical harmonic coefficients of the
scalars p and p; respectively. D/? is the transformed biharmonic operator A? and D, is
defined as

2
po i 2410+
dr r dr r2

Now since r-A = 0, it is evident from equation (11) that the toroidal scalar is governed by
the following equation:

NA*Ag =0,
and expanding q in terms of spherical harmonics this last result becomes:
Dy q"(r)=0. (16)

Equations (15) and (16) show that when the dynamic viscosity, 1, is assumed constant then
lateral density variations will only excite a poloidal flow field; this is also true for the more
general case in which the viscosity is an arbitrary function of radius as shown, for example,
by Arkani-Hamed and Toksoz (1984).

The poloidal flow Green function, p/*(r ), is found by solving

DEplrir)=8r-r), 17

where 8(r) is the Dirac delta function and r” is the radius at which the 8-function load is
placed. The Green function will depend on the boundary conditions assumed at the Earth’s
surface (r=a) and at the core-mantle boundary (CMB; r=>b). If one assumes that, on the
whole, the tectonic plates are participating in the large scale flow in the mantle then a free-
slip boundary condition at r=a is suggested. We will also assume a free-slip condition at
the CMB. The derivation of the poloidal flow Green function which satisfies these
boundary conditions is presented in Appendix A. Once the Green function has been
obtained it is clear from equations (15) and (17) that the poloidal scalar will be given by

2 ¢ ()
ny ’ P
The toroidal flow present in the observed surface plate velocities obviously poses a
problem when attempting to predict the plate motions using the poloidal scalar of equation
(18). We believe however that the conversion of poloidal to toroidal flow occurs largely
near the Earth’s surface where the lateral variations in rheology and chemistry are the most
extreme. This suggests then that density heterogeneity below the lithosphere will mostly
excite poloidal flow thus maintaining the validity of equation (15). We found moreover
(Forte and Peltier, 1986) that a strong correlation exists between the horizontal divergence
and the seismically inferred lateral heterogeneity in the upper mantle at degrees 2 and 4;
this suggests that there is a linear relationship between these two fields and that it should

therefore be possible to model the horizontal divergence at these two degrees with a
spherically symmetric viscosity model.

prr)= [(rryadr . (18)
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Figure 4. Kemels for an incompressible, homogeneous mantle with free-slip conditions at the surface and
CMB.: (a) Horizontal divergence kemels (b) Geoid kemels for a self-gravitating mantle.

The kernel function, S;(r), which allows us to predict the spherical harmonic
coefficients of the horizontal divergence at r=a from the lateral density variations in a
constant-viscosity mantle is derived in Appendix A where we show

(Vyuw)™r=a)=

S 15,07 ore) ar . (19)
My

In Fig. 4(a) we show the function §,(r") for several degrees. The density perturbation,
(p"(r), is obtained from models M84C of Woodhouse and Dziewonski (1984) and
L02.45 of Dziewonski (1984) where we are assuming that the lateral variations in seismic
wave speeds are caused solely by lateral temperature variations:

(0p/0T)
2v,(0v,;/9T)
P = (20)

% [8(v,))", 670 km <z <2895 km

BvHI", 25km <z <670 km

The temperature derivatives we use in (20) were obtained by Anderson et al. (1968) from
laboratory analyses of spinel. Forte and Peltier (1986) show that the temperature
derivatives of spinel are probably reasonable estimates of the actual values. The degree
correlations (e.g. O’Connell, 1971) between the observed horizontal divergence and the
divergence predicted using (19) are shown in Table 1 where one observes that excellent
correlations are obtained at /=2 and 4 as expected.
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Table 1 Degree correlations between predicted surface divergence for a homogeneous
mantle and observed surface divergence

Degree, [ Correlation Coefficient Significance Level, o
1=2 .80 90% < . < 95%
=3 30 o< 80%
1=4 .68 95% < 0. < 98%
1=5 28 o< 80%

The straightforward manner with which the kernel functions for the non-hydrostatic
geoid are derived is a good illustration of the flexibility offered by the Green function
method. The harmonic coefficients of the interior gravitational potential produced only by
the internal density heterogeneity in the mantle are:

a

4n( J

Uindi"(r) = ,+1 (p"(r' ) dr’, (21)

where b <r <a,r_=min (r,/), and r, = max (r,r"). The harmonic coefficients of the
internal potential produced by the deflected surface boundary at r=a are:

W) )_ 47tGa

(po Pw)

1
L] ar", 2)
a

where da" are the harmonic coefficients of the deflection of the Earth’s surface, da (0,0),
from its reference position and we have assumed that the mantle of density p, is overlain

by ocean with density p,,. The expression for the internal potential produced by the
deflected CMB is:

1+1
U0 = T2 (b, = p,) H 8, @3

where p, is the density of the outer core and 3b;" are the harmonic coefficients describing
the deflection of the CMB. We expect that the deflections of the phase-change boundaries
in the mantle are likely to contribute significantly to the Earth’s gravitational potential but
in the absence of information regarding these deflections we will state that the total
perturbed potential, ¢,, is simply given by:

@) = Upd"(r) + UM(r) + Up)(r) - 24)

The surface deflection &a(0,0) may be determined from the condition that the o,
component of the stress tensor will be continuous at the bounding surface:
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P\(r=a) m { au,}
Ba (24) = - : 25
a( ¢) go(po—pw) go(po_pw) ar Hag ( )

where P, is the non-hydrostatic pressure and u, = f u. The deformed CMB will also be
described by (25) except that p,, is replaced by p, and all quantities are evaluated at r=b.
In Appendix A we provide complete details of the derivation of the self-gravitating geoid
kemels, G, ("), which allow us to predict the geoid:

a

Ge)"= ﬁﬁ Jaie) eorear, 26)
where (Ge);" are the harmonic coefficients of the predicted geoid and p is the average
density of the Earth. The behaviour of the function G,(r") is shown in Fig. 4(b) where it is
observed that the kernels all have a negative sign. The negative sign of these kernels is due
to the dominant negative contribution of the flow-induced deflection of the surface
boundary compared to the weaker positive contribution of the internal lateral density
variations (e.g. Hager, 1984). A comparison of equations (19) and (26) shows that, in
contrast to the predicted horizontal divergence field, the predicted non-hydrostatic geoid
produced by lateral density variations in a constant-viscosity mantle will not depend on the
viscosity.

In Table 2 we present the degree correlations between the observed, GEM10B, non-
hydrostatic geoid of Lerch et al. (1979) (filtered by removal of the hydrostatic flattening
determined by Nakiboglu (1982)) and the geoid predicted using (26). From an analysis of
the degree correlations between the observed, non-hydrostatic geoid and the seismically
inferred miantle heterogeneities we found (Forte and Peltier, 1986) that the kernels
describing the degree-2 and 3 geoid should have maximum (negative) amplitudes in the
lower mantle and negligible amplitude in the upper mantle while for / > 4 the kernels
should generally have maximum (positive) amplitudes in the mid-mantle and negligible
amplitudes elsewhere. An examination of the shapes of the geoid kemels shown in Fig.
4(b) will then reveal why the correlations in Table 2 are generally poor.

Table 2 Degree correlations between predicted geoid for a homogeneous mantle and
observed non-hydrostatic geoid

Degree, | Correlation Coefficient Significance Level, o
1=2 -.01 o< 80%
1=3 .53 o< 80%
=4 -.51 80% < o < 90%
1=5 .60 a=95%
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3.2 Green function for a two-layer mantle

A simple Earth model that permits one to determine the effects of viscosity stratification is
an incompressible mantle divided into two layers having different viscosities. We continue
to assume that a whole-mantle convective flow exists and we do not therefore consider the
case in which the depth of the viscosity jump also coincides with a chemical discontinuity
which occurs if there is a layered convective circulation.

CASE (i) CASE (ii)

r =a (surface) r=a

UPPER LAYER TTTTTmosomooooo---e- r=r
@ PP, M=,

depth of
r= (viscosiry jump) r=d
@ LOWER LAYER
p=p. M=, ®
____________________ r=r' (8 -function load)
@ r=b (CMB) r=b

Figure 5. Schematic diagram of the geometry for the two-layer Green function.

The dynamic viscosity in each layer is assumed constant and thus equation (15) is valid in
each layer. Since the delta-function loads may be placed in either layer the problem
consists of treating two cases: case (i) - find the poloidal flow Green function for a §-
function load in the lower layer, and case (ii) - find the poloidal flow Green function for a
d-function load in the upper layer. The Green function for case (i) will thus satisfy the
following equation:

DA ) ={ 5(,‘1,,) grza @7
while the Green function for case (ii) satisfies:
DR ) ={5(’6 bl e8)

where r=d is the radius at which the viscosity jump occurs. It is evident from equations
(27) and (28) that the mantle will in each case consist of three regions which are shown and
numbered for reference in Fig. 5. The poloidal flow Green function will again satisfy free-
slip boundary conditions at the Earth’s surface and at the CMB. From equations (15), (27),
and (28) one may verify that the poloidal scalar is given by:
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(PH()

pr(r)= m ——— @"(r ) dr

L& }‘(po,"'( )

PL)M(r ) dr (29)
LV

where 1, and 1, are, respectively, the viscosities of the upper and lower layers. If we let,
for example, (ps)(r ') denote the Green function (p, );"(r,r") in the region d <r <7’
(i.e. layer S in Fig. 5) then the numbering scheme in Fig. 5 allows us to rewrite (29) as:

pl’"(r)_ (pl)l( ) ([)S)Im( )
Ny r
3 J'(pl)l (r) (p4)lm(r )drr (303)
Ny d

d
g_g(p‘)‘()(pgi"(rr)dr ford<r<a
b

L

and

L J‘(pl)l ")

(P (r.r )dr
u d
(Pl)l( )
Ng 30b
. J (PI(rr) dr (30b)

. 8y f (Pl)z( r)

@)Mry)dr, for b<r <d
e %

The complete details of the Green function derivation for the two-layer mantle will be

found in Appendix B. In this Appendix we also derive analytic expressions for the kernel
function, S;, describing the horizontal divergence:

m gn T ’ my. s ’
(Viwir=a)=" [Si¢" mema.d) (e yar . 31)
“ b

From (31) it is evident that although §;, depends on the ratio of the viscosities the
multiplicative factor, 1, , implies that the amplitude of the predicted horizontal divergence
depends on the absolute value of the viscosity in each layer. In contrast, the predicted
non-hydrostatic geoid will depend only on the ratio of the viscosities of the two layers:
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Figure 6. Kernels for an incompressible, two-layer mantle with free-slip conditions at the surface and CMB
and viscosity jump at z=670 km. (a), (b), and (c) Horizontal divergence kemels; (d), (e) and (f) Geoid kemels
for a self-gravitating mantle.

m __ 3 7a me./ ’
o= s JG,(r Mo Mud) PO )dr (32)
where G, is the geoid kernel, derived in Appendix B, for the self-gravitating, two-layer
mantle.

The behaviour of the kernel functions describing the horizontal divergence and the
geoid for the case d = 5701 km (i.e. depth z = 670 km) are shown in Fig. 6 for several
viscosity ratios. A comparison of Figs. 4 and 6 shows that the effect of increasing the
viscosity at depth has "split" the divergence and geoid kernels: the longest wavelength
geoid (I =2,3) is now more sensitive to lateral density variations in the lower mantle while
the horizontal divergence is most sensitive to lateral density variations in the upper mantle.
One also observes that the geoid kemels in Fig. 6 become increasingly positive as the
viscosity of the lower layer increases since the mantle becomes "stiffer" thus diminishing
the negative contribution to the geoid provided by the surface boundary deflection; this
allows the positive contribution of the internal density anomalies to the geoid to become
dominant (Hager, 1984). In Fig. 7 we show profiles of the divergence and geoid kernels for
the case d = 5171 km (z = 1200 km). The kernel functions shown in Figs. 6 and 7 show
that the predicted geoid will be very sensitive to changes in both the viscosity ratio and the
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Figure 7. Kemels for an incompressible, two-layer mantle with free-slip conditions at the surface and CMB
and viscosity jump at z=1200 km.: (a), (b) and (c) Horizontal divergence kemels; (d), (e) and (f) Geoid
kemnels for a self-gravitating mantle. )

depth of the viscosity jump while the predicted horizontal divergence will be relatively
insensitive to these changes.

The degree correlations of the geoid predicted using (32) and the observed non-
hydrostatic geoid are presented in Fig. 8. When the boundary depth is at z = 670 km the
best correlations for degrees 2 and 3 occur when 16 < m; /m, < 18 but the correlation at / =
4 is very poor in this range while the correlation for / = 5 has the "wrong" sign. The best
fit, at all degrees, is obtained when z = 1200 km since for 1. /1, = 8 the correlations for / =
2-5 are all positive and those at / = 2,3 and 5 are more than 90% significant. In Fig. 9 we
show the degree variances of the predicted geoid.

We noted previously that the profiles of the horizontal divergence kernels are relatively
insensitive to changes in the viscosity ratio and the depth of the viscosity jump. The degree
correlations of the horizontal divergence predicted using (31) and the observed divergence
are therefore expected to be fairly constant and this is confirmed in Fig. 10. The most
appropriate viscosity ratio, 1 /m,, , and radius of the boundary, d, must then be determined
by fitting the predicted geoid to the observed non-hydrostatic geoid. An objective measure
of fit which includes the information provided by both the degree correlations and the
degree variances is the root mean square (rms) error, J,,,, defined by:
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Figure 8. Degree correlations of corrected, non-hydrostatic, geoid (Nakiboglu, 1982) obtained from the
GEMI10B geopotential model (Lerch et al., 1979) with the predicted geoid, as a function of viscosity contrast
and depth of viscosity jump.
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Figure 9. Degree variances (in metres) of the predicted geoid, for a two-layer mantle, as a function of
viscosity contrast and depth of viscosity jump. The dashed horizontal lines are the degree variances of the
corrected, non-hydrostatic, GEM10B geoid.
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-1

where G,(6,4) and G, (6,9) are, respectively, the predicted and observed non-hydrostatic
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Figure 10. Degree correlations of the observed and predicted surface divergence fields for a two-layer mantle,
as a function of viscosity contrast and depth of viscosity jump.

geoids. Expanding both G, and G, in terms of spherical harmonics one then obtains from
(33),

82 =382, (34)
i
where,

812 = (o-p)l2 + (0-0 )12 - 2pl (Gp )l (Go )l

In (34), (6,), and (0,), are the degree variances of the predicted and observed non-
hydrostatic geoid, respectively, while p; is the degree correlation between these two fields.
When the depth of the boundary between the layers is at z = 670 km, the rms errors
obtained for the case m; /M, = 18 (which maximizes the degree correlations) and for the
case M, /M, = 6 (which best matches all the degree variances) are presented in Table 3. In
Table 4 are shown the rms errors when z = 1200 km for the cases M, /1, = 8 (maximizes
degree correlations) and n; /m, = 4 (matches the degree variances). A comparison of these
two tables show that a sort of "trade-off" exists in that essentially equivalent fits (as
measured by §,,,,) to the observed non-hydrostatic geoid are obtained by either placing the
boundary at z = 670 km with n, /m, = 18 or by placing it deeper, at z = 1200 km, which
then requires a lower viscosity ratio of ny/n, = 8. The slightly better fit to the observed
non-hydrostatic geoid in the range / = 2-5 when z = 1200 km and 1, /1, = 8 is entirely due
to the much improved fits at / = 4 and 5 compared to when z = 670 km. A more graphic
illustration of the extent to which the predicted geoid matches the observed non-hydrostatic
geoid for the case z = 1200 km and m; /1, = 8 is provided in Fig. 11.

Now that the optimum viscosity ratio and boundary depth have been determined, the
absolute value of the mantle viscosity may be found by matching the kinetic energy of the
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Table 3 Rms errors between predicted and observed non-hydrostatic geoid for the case z =
670 km.

Tleu = 18
Degree, [ (0,); (metres) ol 5, (metres)
1=2 15.8 .82 19.8
1=3 15.2 .87 10.0
=4 13.6 25 14.8
=5 16.3 -52 212
S, =34.1m
nL /T]u = 6
Degree, [ (0,); (metres) )] §; (metres)
=2 28.0 13 38.7
1=3 22.8 67 17.5
1=4 8.8 -48 164
=5 9.7 .53 8.6
5, =463 m

predicted, purely poloidal, surface flow field to the kinetic energy of the observed surface
plate velocities which consist of both poloidal and toroidal components. We include the
kinetic energy of the toroidal field since we assume that it is produced by a flux of energy
out of the poloidal field. The amplitude of the predicted horizontal divergence (or,
equivalently, of the predicted poloidal scalar; cf. (3a)) depends on both 1, /n, and 1, and
to illustrate this dependence in a single diagram we have plotted in Fig. 12 a quantity called
log;o(or ) which is defined by:

ol(nL/nu) ] (35)

o,y /M,=1)
where o;(m;/n,) is the degree of the predicted horizontal divergence for a given value of
ne/M.. The quantity o; defined in (35) will be independent of 1, since this viscosity

appears merely as a multiplicative factor in (31) and thus log;4(cg) is only a function of
M. /M,. The observational constraints on 1, (and hence m; ) are introduced by considering

log;o(cg ) = logyo [
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Figure 11. (a) The corrected, non-hydrostatic, GEM10B geoid synthesized from harmonics in the range 2 <
1 5. The contour interval is 20 metres. (b) The non-hydrostatic geoid predicted using the geoid kemel for a
two-layer, self-gravitating mantle with a factor of eight viscosity increase at a depth of 1200 km. The contour
interval is 10 metres.

log, (o, ) =logyo { (36)

o (m;/M,=1)
where o, (observed) is the total kinetic energy (i.e. poloidal + toroidal), at each degree, of
the observed surface plate velocities. The quantity o,, defined in (36), is directly
proportional to 1, and is independent of n, /m,. The horizontal dashed lines imFig. 12 are
plots of log;o(c,) for M, = 1 x 10?' Pa s. When an appropriate value for 1, /m, has been
found then the value of m, is determined by equating log,,(cy ) with log;¢(c,) and in Fig.
12 this is equivalent to measuring, for a particular degree, the distance as measured along
the ordinate axis of the point (determined by m;/m,) on a log;o(cz) curve from the
logyo(oy) line ; if this distance is called d then the value of M, is m, = 10? x 7, = 10¢ x
10?' Pa s. Now, since the best degree correlations between the predicted and observed

o, (observed) ]
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Table 4 Rms errors between predicted and observed non-hydrostatic geoid for the case z =
1200 km.

n./m, =8
Degree, I (6,); (metres) o 6, (metres)
1=2 8.4 78 24.6
1=3 5.0 .65 17.1
1=4 3.0 13 103
1=5 5.8 53 6.6
S, =323 m
nL/nu =4
Degree, | (0,); (metres) o 8, (metres)
1= 22.1 11 35.7
I= 14.6 .59 16.3
1=4 7.8 -47 15.5
1=5 13.3 .62 10.5
S, =43.5m

horizontal divergence fields are at / = 2 and 4, we will match the predicted and observed
kinetic energies at these same two degrees in the manner just described. We find then that
for the case z = 670 km and m;/m, = 18 the value of m, determined from the degree-2
matching is 1.47 x 102! Pa s which agrees well with 1, = 1.55 x 10* Pa s determined from
the degree-4 matching. When z = 1200 km and m;/n, = 8, the value of 1, determined
from I =2 is 2.31 x 10% Pa s which again agrees well with 1, = 2.26 x 10*! Pa s obtained
from I =4.

The predicted and observed horizontal divergence fields are well-correlated at ! =2 and
4 as noted previously. A more pictoral illustration of the agreement between these two
fields is given in Fig. 13 where we show maps of the predicted and observed horizontal
divergence synthesized from harmonics in the range / = 2-5. The agreement between these
maps is quite good and the places where the biggest mismatch occur are North America,
Asia and Australia; these regions are incorrectly shown to be subducting in the predicted
divergence map since our simple model does not incorporate the effects of lateral variations
in chemistry which produce buoyant continental masses.
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Figure 12. Degree variances of the predicted surface divergence field, for a two-layer mantle, as measured by
log (og) (cf. equation (35)) as a function of viscosity contrast and depth of viscosity jump. The dashed
horizontal lines are the degree variances of the observed surface divergence field, as measured by log (5, ) (cf.
equation (36)).

4. The importance of poloidal-toroidal coupling

The agreement between the predicted and observed fields in the maps shown in Figs. 11
and 13 is encouraging and it illustrates the approximate validity of the very simple viscous
flow models that we have used. It is certain that an improved fit to the observed surface
fields may be made by increasing the accuracy and resolution of the seismically inferred
lateral heterogeneity models that we have used. However, the most serious problem with
our spherically symmetric viscosity models is that lateral density variations will only force
a purely poloidal flow field. We are therefore unable to reproduce the observed
equipartition of kinetic energy between the poloidal and toroidal flows at the Earth’s
surface. Toroidal flows may be generated by allowing the viscosity to vary laterally thus
producing a coupling between poloidal and toroidal scalars (Forte and Peltier, in
preparation). We expect that this coupling will be strongest in the lithosphere-
asthenosphere where the lateral variations of rheology and chemistry are the most extreme.

An Earth model with poloidal-toroidal coupling is expected to produce geoids that are
quite different from those presented in this report. The predicted geoid depends almost
entirely on the fine balance achieved between the opposing contributions from the surface
topography and the internal mass anomalies. The good geoid correlations obtained with the
two-layer model are a direct resuit of the reduced surface topography produced by
increasing the viscosity of the lower layer. If one introduces lateral viscosity/chemistry
variations then we expect that a similar reduction in topography might be achieved since
we assume that the toroidal flow that is generated in the near-surface region at the expense
of the interior poloidal flow will itself produce little or no surface topography while the
topography supported by the now weaker, near-surface, poloidal flow will be diminished.
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Figure 13. (a) The normalized, observed horizontal divergence of the surface plate motions synthesized from
harmonics in the range 2 </ < 5. This field has been normalized by dividing by the total degree variance of
the actual field for the range 2 S < 5 such that the total degree variance of the field shown in the map is
exactly unity. The contour interval is 0.5 (dimensionless units). (b) The normalized horizontal divergence
predicted using the divergence kernel for a two-layer mantle with a factor of eight viscosity increase at a depth
of 1200 km. This field has also been normalized as in (a). The normalized, predicted divergence field
depends only on 1, /1, and is independent of 1, (<f. equation (31)) thus facilitating a direct comparison with
the field shown in (a). The contour interval is 0.5 (dimensionless units).

This suggests then that one may model the geoid with smaller viscosity increases at depth
by introducing lateral viscosity/chemistry variations in the near surface region. The trade-
off between poloidal-toroidal coupling and the strength of the viscosity contrast in the
two-layer model may be illustrated in a somewhat ad hoc manner by defining a "poloidal
conversion factor", o. We may then try to reproduce the effect of poloidal-toroidal
conversion near the Earth’s surface by multiplying the poloidal scalar, p;"(r=a), by o thus
simulating a (1 — o) x 100% flux of energy to a toroidal flow which we assume contributes
little or nothing to the geoid. In Fig. 14(a) and (d) we show, for example, that a great
improvement in the / = 2 geoid correlation is obtained when o = 0.875. In Table 5 we
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Figure 14. Behaviour of the predicted geoid when the effect of poloidal-toroidal coupling at the surface is
simulated via a poloidal conversion factor. A conversion factor, o, mimics a (1 - ) x 100% flux of energy to
the toroidal field: (a), (b) and (c) Degree correlations of corrected, non-hydrostatic, GEM10B geoid with
predicted geoid as a function of o; (d), (e) and (f) degree variances (in metres) of predicted geoid as a function
of a. Dashed horizontal lines are degree variances of corrected, non-hydrostatic, GEM10B geoid.

show that the good match between the predicted and observed geoid at I = 2 for ;. /m, =
20 is due to the reduction of the surface topography at this degree from 695 m to 538 m and
that a similar reduction is achieved in a constant viscosity mantle with a 23% flux of energy
to the toroidal field. '

5. Concluding remarks

The Green function formalism provides a mathematically straightforward method for
deriving analytic, closed-form, expressions for the kernel functions relating the horizontal
divergence of the surface flow and the non-hydrostatic geoid to the seismic tomographic
inferences of lateral density variations in the mantle. The kernel functions for a two-layer
mantle were used to predict horizontal divergence and non-hydrostatic geoid fields which
are in fairly good agreement with the corresponding observed fields. In particular, we have
shown that the agreement between the predicted and observed horizontal divergence fields
(cf. Fig. 13) is reasonably good thus providing strong support to the notion that the large-
scale tectonic plate motions are the direct expression of the convective flow in the mantle
driven by internal thermally induced buoyancy forces.

A central aim of this report has been to present a unified description of both the non-
hydrostatic geoid and the surface plate kinematics as represented by the horizontal
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Table 5 Degree variances of the predicted surface topography

a=10,n./m, =1

Degree, [ Degree variance (metres)
1=2 695
1=3 449
=4 582
=5 1,012

a=1.0,n.Mm, =20,z=670 km

Degree, | Degree variance (metres)
1=2 538
1=3 342
1=4 452
1=5 753

a=0.875,n.Mm, =1

Degree, | Degree variance (metres)
1=2 542
1=3 371
1=4 486
1=5 856

divergence field. The predicted non-hydrostatic geoid depends only on the viscosity ratio
in a two-layer Earth model but the predicted horizontal divergence instead depends on the
absolute values of the viscosity in each layer. We have thus been able to establish
preliminary estimates of the absolute value of the viscosity by ensuring that the balance
between buoyancy forces and viscous dissipation is such as to produce a surface flow
whose kinetic energy matches that of the observed surface plate velocities. In attempting to
match the predicted and observed non-hydrostatic geoids we found that a trade-off exists
between the required viscosity contrast and the depth of the viscosity jump in the two-layer
model. We found further that the two-layer model providing the most successful fit to the
observed non-hydrostatic geoid has a factor of eight viscosity increase at a depth of 1200
km; in this model the viscosity of the upper layer is M, = 2.3 x 10?! Pa s while that of the
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lower layer is 1, = 1.8 x 102 Pas. The discrepancy between these preliminary viscosity
estimates and those obtained from post-glacial rebound (e.g. Wu and Peltier, 1983) may
have implications for the issue of transient rheology in the mantle (Peltier et al., 1986; Forte
and Peltier, 1986).

The existence of strong toroidal flow in the observed surface plate velocities points to
an important defect in Earth models with a spherically-symmetric viscosity distribution
since such models are unable to produce any toroidal flow. In section 4 we argued that the
generation of toroidal flow by a flux of energy out of the poloidal flow field is likely to
produce surface topography of smaller amplitude than that produced in the absence of this
effect. Since the predicted geoid is very strongly dependent on the predicted surface
topography we then believe that incorporation of the effects of poloidal-toroidal coupling
may allow us to fit the predicted geoid to the observed geoid with a smaller viscosity
increase at depth in the mantle thus providing a possible reconciliation with the small
viscosity contrast at the 670 km seismic discontinuity required by glacial isostatic
adjustment analyses. If such a reconciliation were not possible then it may be necessary to
argue that the viscosity inferences obtained from glacial isostatic adjustment analyses
represent transient values rather than steady-state values (Peltier et al., 1986).

Appendix A: Homogeneous, incompressible mantle
A.1 Derivation of the Green function
The required Green function must satisfy equation (17); that is,
DEpr(ry)=8(r-r). (A1)

When r #r’, (Al) is the biharmonic equation whose solution is easily found; therefore, the
solution of (Al) is split in two parts: a solution defined for the region » <r < a and a
solution for the region b < r < r’. These two solutions must then be joined at r=r" by
applying the appropriate matching conditions. The biharmonic equation,

DEprrr)=0,

is a fourth order differential equation whose solution will consist of the sum of four linearly
independent functions:

me,. s 1 B, 142 D,
plrrY=Ar + gt Cr T+ =, <r<a
A4 e ;
B, D,
p,’"(r,r')=A2rl+——H+C2rl+2+—ﬁ,b <r<r (A2)
r r

In (A2) there are 8 coefficients which are found by applying the boundary conditions at
r=a, r=b and the matching conditions at r=r". Two boundary conditions are obtained by
requiring that the radial component of the fluid velocity, u,, is zero at the deformed
bounding surfaces of the fluid layer (which to first order accuracy may be taken as applying
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at the undeformed reference positions of the bounding surfaces):

U, =iu=1A2p (A3)
r

Therefore, from (A3), one sees that if u, = 0 for all 8 and ¢ at both r=a and r=b, then

plm(r’r,):o > r:a’b (A4)

Two more boundary conditions are obtained by requiring that the shear stresses, 6,4 and

C,¢, are both zero at r=a and r=b, and one may show (e.g., Chandrasekhar, 1961) this
condition implies that

d2
—a P r)=0, r=ab (A3)

Three matching conditions are obtained by requiring that u,, ug (and uy), and ©,¢ (and G,,)
are continuous at »=r"; one can therefore show that:

Pl Yoy =Pl ey

dplm(r’r') dplm(r,r,)
i -, A6
dr L—r dr L—r’ ( )
d’pl(r ') 1 d’p(r v') 1
dr? - dr? =

The final matching condition is obtained by integrating equation (A1) from r=r""to r=r""
and using (A6) to obtain

d3p{”(r ,r')L ~ d3p["(r J)
ar’ 77 dr?

The eight conditions contained in equations (A4), (AS), (A6) and (A7) when applied to
(A2) will yield expressions for the 8 coefficients:

bo=1 (A7)

D,
a
1 1 1=y
= A8
i 2Q2043)Q21+1) P 1 —(ab)PH? W
21 _ (21
D, 1 a 1-("1b)

T @) 71— (alb)E
and
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D
A2=_T:7BZ=_C2b21+3
b
_ 1 1 1-@/a)¥P (A9)
27 2QI3)QU+1) T 11— (bla)PH
[ ap— b 1-(1a)*!

2041%-1) '3 1-(bla)?!

In order to obtain expressions for the kernel functions describing surface divergence and
geoid height one requires expressions for the derivatives of the poloidal scalar which is
given by equation (18), that is,

p;"<r>=—g1—;’— [ (pl)’ L o 72
£ (p’)’( GV (A10)

b

where (p);"(r /') is the Green function valid for ¥ <r < a and (py)"(r /") is the Green
function valid for b <r < r’ (see equation (A2)). From expression (A10) one may readily
show that the Green functions for the first, second, and third derivatives of p/*(r) are the
first, second, and third derivatives of p/*(r /") respectively.

A.2, The surface divergence kernel :

Since V-u =0, then

Vyu=-— iz (ru,) (A1)

or
Now, to first-order accuracy, u, = 0 at r=a and therefore from (A11) we get
ou,
VH -u(r :a) =— —ar— L=a (A12)

If one substitutes (A3) into (A12), expands into spherical harmonics, and uses result (A4)
then one can show that

l(l+1) dp["(r)
dr

Result (A13) proves equation (3a). From (A10) one gets

(Vygu)ir=a)=———— ——|, . (A13)

dpl" (r) g } (pl)l ") ddirr)
b

e = o dr Al4
A o = dr (A14)
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Upon substituting (A2) into (A14), and using (A8), one finds from (A13) that
m go t ’ my 7 ’
(Vg wi(r=a)= ?jsmr ) (P dr’
b

where

o@D | 1 1= e 1 1= )P
S0 =56 {

rll 1__(a/b)21+3 a2rll"2 1_(a/b)21—1
A.3. The Geoid Kernel

If one expands all quantities in equation (25) in terms of spherical harmonics then the

following result is obtained

A
8o (po _pw)

The non-hydrostatic pressure may be obtained from the é-component of the momentum
equation (6):

d (u,)["(r) } '

[(Pl){"(r=a)—2n —“dr—Lm (A15)

1 a‘Dl
7%”1-“[“]9“’0 r 20

where one can show from (10), assuming a purely poloidal flow field, that

190 0
[Au}e__r 09 or rap.

and thus if one expands all quantities in terms of spherical harmonics one can show that
) m d m m
@ =1L Dypre)] +p, @07, (A16)

where D; is the transformed Laplacian operator in equation (15). Now, from (A3) it
follows that

W) == = L0+D) I (A1)

If (A16) and (A17) are substituted into (A15), and use is made of the boundary conditions
(A4) and (A5), it follows that

1 Po
Sam = X" r=q) + ————— Mr=a), AlS8
! (po_pw) ! (r a) 8o (po—pw) ((bl)l (r ) ( )
where
m = _n_ — .i?_,_ M __d_ m
Xpey=L |- 2 FOD L gy (a19)

Similarly, in the case of the core-mantle boundary deflection, 85", one can show that
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1 Po
ob" = XM(r=b)+ ————— (0 (r=b). (A20)
: (po ‘Pc) ! 8o (po —pc) vt
If one now substitutes (A18) into (22), (A20) into (23), and combines the results in (24)
then one may show that

!
@) =Undr)+ ‘thi? [_;_} {X,”‘(Ma) + %Z_(%)[" (r=a )}

1+1
4 o
- H {X{"(mb) + S @)= )} (a21)

In equation (A21) it is clear that to find (¢;)"(r) one must know (¢;)"(r=a) and
(0" (r=b); this is easily accomplished by setting r=a and r=b in (A21) thus producing
two simultaneous equations which may be solved to find (¢,);"(r=a) and (¢;);"(r=b) and
having done this one may then show that
2041] -1
b
]

AnaG
21+1

(A-K,)(+K,) + K, K,

i
OIr) = Ud(r) + H

=[]
)

where
_ 4drtaG po

Ka (Uint)lm(r:a) +

XMr=a )] -

21+1

Ky (U7 (r=b) + ST0G x,"*<r=b>ﬂ . (A22)

_ 4nbG p_o

= = . A23
T g, MR TOLT g, (A23)
When expression (A19) is substituted into (A22) one may show that
m 4naG ¢ i e
@If(@)= 5 [G) pore) dr (A24)
+1 3
where
2041 -1 142 2141
KK , K,
G = 1=k, s 2L £ Ll 41 X
1+Kb a a 1+Kb r a
" 2+ 142 % 5 & 1+
a a .
A 1= = = =B 1- == A2
I(r )|: 1+Kb a 7} [rl} l(r )l’ 1+Kb {a } [rr} 2}3 ( 5)

and where
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1042 [ a] ™ 1=y
A= S | Y 1- @by

!
A+)(A-1) | a| 1= /b)**
20+1 r 1-(a/b)?+3 "’

1-2
B¢ )= L2 1(1+2) 1— (7 la)?!
: 20+1 r’ 1- (bla)?!

@01 [ ] 1=
21+1 'l 1-(la)??

The non-hydrostatic geoid-height field is obtained from ¢,(r=a) by dividing by g, and thus
from (A24) one has

Ge)'= 57— JG:(r)(pl), ',

l 1
where (Ge )™ is the harmonic coefficient of the geoid-height field, p is the average density
of the Earth, and G,(r") is the geoid kernel given in equation (A25).

The effects of self-gravitation on the geoid are contained in the constants K, and K,
which are defined in equation (A23). To obtain the geoid kemels, G,(r’), for a non-self-
gravitating mantle one simply sets both K, and K, to be zero in equation (A25); one may
also note that this equivalent to letting / — oo,

Appendix B: Inhomogeneous (two-layer), incompressible mantle
B.1 Derivation of the Green function

As in equation (A2), the Green function (p;);"(r ,¥*), valid in region i (i =1,2,3,4,5,and 6 -
see Fig. 5 and equation (30)) is given by the expression

B; D

@)Mrry)= Ar+———+Cr +—1:. (B1)
For either case (i) or case (ii) (Fig. 5) equation (B1) shows there are 12 coefficients to be
found; they are determined by applying the free-slip boundary conditions at r=a and b,
matching conditions at r=r" (see Appendix A), and by applying appropriate matching
conditions at r=d. Since we assume that a whole mantle flow exists the conditions we
impose at r=d are continuity of mass flux, normal stress, tangential stress, and tangential
velocity:
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Pu Ur =g =PL U l=g » (B2a)
Oprbed = O hea = (PL—Pu) 8 8d , (B2b)
Oroh=a’ = Orop=a > (B2¢)

Uohea = Uoh=g > (B2d)

where p,, and p,, are, respectively, the densities of the upper and lower layers and 84 is the
deflection of the material interface r=d from its reference level. A considerable
simplification is made by assuming, as in Richards and Hager (1984), that p, = p, (= 4.43
g/cm?) since then we can ignore the deflection &d in equation (B2b). When the 12
boundary and matching conditions are applied to (B1) one may find all the coefficients;
expressions for these coefficients may be found in Forte and Peltier (1986).

B.2 The surface divergence kernel

To determine the surface divergence field in a two-layered mantle we again use equation
(A13) in Appendix A. The radial derivative of the poloidal scalar at r=a is obtained from
expression (30a):

d m . a d m , 7’ mys. .’
D1 b, = g J @) . (pl)l,(r) a +
dr Ny, % dr r

t

d

8o J- dp3)"(rr") 1 P ar

. b dr = r

(B3)

Using expression (B1) one can show, using (A13) with (B3), that

(VH-un%r=a)=-ﬁi-jsmrﬁva><pof%f>aV', (B4)
u b

where y=1,/Mm,,

’ ! <r<
s wd)=) (PO, d=rsa
SP®, bsr<d

where,
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P )= 1(1+1)[—1[ ri} A+ (+1)

a ’
— | Bi
-

141
4

]
+(1+2)[%} c,-’—(1—1){— D;|.

r
a

The quantities A,-', B,-', C;, and D, are obtained by non-dimensionalizing the coefficients 4;,
B;, C;, D; according to:

1

© - s
e Bi,C,' =r C",Di = ,-’1+2

D; .

B.3 The geoid kernel

In our two-layer model we have assumed, for simplicity, that the densities of the upper and
lower layers are equal and therefore any deflection of the interface r=d will not affect the
perturbed potential ¢;; consequently, equation (A22) of Appendix A will also be valid for
the two-layered Earth. The first task is thus to determine the kemels for the quantities
X["(r=a) and X;"(r=b). From equation (A19) we have

MNu d> 310+l d
XMr=a)=— | -r — + ——2L = pI"(r)}_ BS
1 (r a) g, a’r3 + i dr pPi (r)|r—a ’ ( a)
n n | a2 310+ d| .
X" r=b)=—|-r —— + HEHL) A (= - (B5b)
‘ & | dr r dr
If one substitutes (30a) into (B5a) then the following expression is obtained:
X[r=a)=[K{r') ()" )dr (B6)
b
where,
s pi@,d<r<a
Keoy=) 7, ,
;pl(?)), b<r <d
where

pi1()=2 {— 1(%31-1) [ri} A+ (+D)(*1-3) [—;‘— B; +

r
a

1 1+1
1(1+1)(1+2)[%] c,.’—1(1+1)(z—1)[—} D,-’} :

The quantities, A;, B;, C;, and D, appearing in the expression for pj (i) have the same
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definition as those in p (i). Similarly, if one substitutes (30b) into (B5b) it can be shown
that

XP(r=b)=[KP(") ()¢ ) dr (BT)
b
where,
b o\ ) YP2(6), d <7 <a
Kitr )‘{ pa(@), b<r <d
where

p;(i)=2I: 11431 1){ ]A + (+1)(*1- 3)[ } ;o

141
o).

The quantities A;, B;, C;, D, appearing in the expression for p,(i) are now defined
according to:

7

1
1A+1)(1+2) [rﬂ] C; - 1(+1)(1-1) [%

‘BB o1 ‘sl 1
Ai—-—b A‘-,Bi---—bm‘Bi,Cl’-—r Ci’Di—rl—l-l—Z—Di'
If one sets r=a in equation (A22), and substitutes (B6) and (B7) into the resulting equation,
the following expression for the self-gravitating potential is obtained:

@@ =57 [ G 1) Gor ) (83)
where,
RES A+ -1 2041
G,(r’;'y,d)z[%] {1‘" (laKa)(1+Kb)+KaKb "Z- :‘ [ 1+Kb{1_[—z—} }:‘
142 142 1-1
'[Kﬁ a4l k|- 3,] Ky 3,] +Kf<r'>m, (B9)
r r r

where the constants K, and K, are defined in equation (A23). The spherical harmonic
coefficients of the non-hydrostatic geoid (Ge );” are directly obtained from (B8) by d1v1dmg
by &,:

3

Gor=371 35 j Gi(r'vd) (PO )dr,

where 5 is the average density of the Earth and G,(r’;y,d) is the dimensionless geoid kernel
given in equation (B9).
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